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The existing data on the vapour pressures, densities and e.m.f.s of concentration cells of dilute
and concentrated aqueous solutions of strong electrolytes have been interpreted in terms of
hydration and incomplete dissociation. Hydration numbers and degrees of dissociation have
been presented for several 1 : 1 strong electrolytes at 25°C. Thus the actual ionic concentrations
of strong acids, bases and salts, hitherto inaccessible, have now been made available.

Association of ions of many multivalent and some univalent strong electrolytes in
solvents of low dielectric constant as well as in water has been recognized; but that
of ions of simple 1 : 1 strong electrolytes like sodium chloride in water is considered
negligible* ~5. However, recent preliminary work® on the properties of over fifty
univalent and multivalent strong electrolytes in aqueous solutions has shown that,
in all cases, the degree of dissociation, «, decreases from unity at infinite dilution
to a constant minimum value, o, over a considerable range of concentrations. Thus,
in general, electrolytes in solutions exist in association—dissociation equilibrium with
their jons as originally supposed” ~%, as a result of interionic attraction and repulsion
between ions of unlike and like charges, respectively, depending on the dielectric
constants of the solvents. Two simple proofs are given here by accounting for the
volumes of solutions and for the e.m.f.s of concentration cells of dilute as well as
concentrated solutions of 1:1 electrolytes in terms of the degrees of dissociation
and hydration numbers, n,, derived from vapour pressures. « and n, data are tabu-
lated for thirty-five 1 : 1 electrolytes in aqueous solutions at 25°C. Similar tables are
being prepared for multivalent electrolytes.

Degree of Dissociation and Hydration Number from Vapour Pressure

The Raoult’s law'® of dependence of vapour pressure on the mole fraction of solvent
(A), modified by Callendar (see ref.!!) for the hydration of solutes, is given by the
equation

(palPR) = naf(na + ng) (1)
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Properties of Aqueous Electrolyte Solutions 687

where p, and p$ are the vapour pressures over the solution and pure solvent and n,
and np are the amounts in moles of “free” solvent and solute (B), respectively. In
a solution of molality m, n, = (55-51 — mn,), where 55-51 is the amount of water
in moles in 1000g. The ratio p,/ps, which is termed'? the activity, a,, of the
solvent, can be obtained! from the molal osmotic coefficient, ¢, as a, = exp .
.(—vme[55:51), where v is the total number of ions into which one mole of elec-
trolyte decomposes.

When a fraction o of one mole of an electrolyte dissociates into v ions, the total
number of moles of solute in a solution of molality m is ng = [1 + (v — 1) a] m,
where [1 + (v — 1) a] = i is the van’t Hoff’s factor’ ~°. Eq. (I) can now be tested
by re-writing it in the form,

Pal(ps — Pa) = asf(1 — ap) = najng = (5551 — mny)fim 2

and by using the available ¢ data'. Fig. 1 shows the dependence of mp,/(pa — Pa)
on m for aqueous solutions of two simple electrolytes, NaCl and KBr (v = 2, « < 1,
i = 1 + a) compared with that of sucrose, a non-electrolyte (v = 1, a = 0,i = 1).
It can be seen that the graphs are linear over a wide range of molalities (m) ((about)
0 to 2, sucrose; 18 to 4, NaCl; 1-8 to 4-5, KBr) implying the constancy of i and n,
in this region. (The region of higher concentrations beyond the linearity will be
discussed in another paper.) The constants, i, and ny, evaluated from the intercept
(5551/i,) and slope (n,[i,) are 0:999 and 501 (refs':'': n, = 5), respectively, for
sucrose. The values of a,(= i,, — 1) and n, obtained similarly for thirty-five 1:1
electrolytes are given in Table I. For comparison, the hydration numbers in' are
also presented in the same table. The main observation from these results is that
the maximum degree of ionic association (1 ~ a,,) increases as the hydration number
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decreases. In the preliminary investigations®®~¢ the use of equation
vme =~ 55-51(ng[n,) 3

which is the limiting form of Eq. (1) for ng < n, (cf.*?), resulted in lower hydration
numbers but almost the same o, values as in Table L.

The constancy of «, in the linear region shows that the ions associate only to
a certain maximum degree in the given solvent, here water. The dimensionless ratio
K defined by

K =a2/(l - a,) =K]c, “)

where K is the molar dissociation constant for a 1 : 1 electrolyte and c is the molar
concentration, is a constant in this range of concentrations. Similar results were
obtained for multivalent electrolytes®d-. Of the listed electrolytes in Table I, HI
has the highest K of 5-88 and CsBr has the lowest of 1-14, while for NaCl, K = 2-37.
In the literature, the linear increase at moderately high concentrations in aqueous
solutions of K, with ¢ for a weak electrolyte such as 2,4-dinitrophenol® as well
as for a strong electrolyte like copper sulphate (Bjerrum’s result discussed similarly
in ref.'*) suggests that « = «,,, a constant for these cases also. The dissociation
constant, K, defined as [«?/(1 — a)] (m[n,) has been shown®® to be equal to exp.
.[—-(F/RT)(y+ — ¥_)], where ¢, and ¥ _ are the Lange’s (inner) potentials of the
ions in the solution. The existing theories of ion association!”® do not predict
the constancy of « observed here.

Assuming n, to be independent of concentration (as, e.g., in ref.!) from m = 0
to m corresponding to the end of linearity in Fig. 1, the values of o =i — 1) at various
concentrations were calculated from Eq. (2). These are given in Table I. It can be
seen from Table I that, e.g., a solution of HCI of molality 0-1 contains a total of
0-1864 moles of solute (ng) comprising of 0-0864 mole each of H* and CI” ions
and 0-0136 mole of HCI in the undissociated (or “ion pair”) form. That the o and
n, values derived above from the vapour pressure data can explain the properties
of electrolyte solutions, is demonstrated below in the next part of this paper.

Correlation of a with the Molal Volumes and Densities of Solutions

The volume V at temperature T of a solution of molality m and the solution density
d are related by ¥ = (1 000 + mMj)/d, where My is the molecular weight of solute
B. In the case of strong electrolytes, the concentration dependences of V and d are
usually interpreted®!*~17 by parametrical equations containing fractional powers
of m based on the idea of complete dissociation. On the other hand, it is demonstrated
here that V depends on « as originally observed by Heydweiller'® despite his (in-
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correct) use of the Arrhenius conductivity ratio for a. (A more exact relation between
o and conductivity is discussed in®®*° and it is currently being refined.)

Let V3 be the volume per mole of the electrolyte and V2 = 1 000/d,, be the volume
of 1 000 g of water before they are mixed, where d,, is the density of water at tempe-
rature T. The total volume of the ingredients before the solution is prepared = Vg +
mVy. Let (V.. + V_ £ 8V) be the effective sum of the volumes per mole of the ions
in the solution, where ¥, and V_ are the volumes per mole of the cation and anion
and 68V is the sum of the volume changes caused by dissociation and interactions
of the ions in the given medium!7-1%2°, The effective volume V3 of the i moles of
solute in the solution is directly dependent on « as

Ve=(1—a) Vg +aVy + Vo £8V)=Vg — o[V — (Vo + V- £38V)]. (5)

Therefore, V, the sum of the volumes of the solvent and solute, is given by the equa-
tion
V="Vy+mVy=V, +mVg —am[Vy = (V, + V. £ 8V)], (6)

where V, is the volume of 1 000 g of water in the solution. The difference, V, — V2,
is a measure of the volume change, if any, brought about by the hydration of the
solute.

Fig. 2 shows the linear dependence of (V' — mVy) on the ionic molality, am, for
NaCl and KBr, where V was calculated from the tables'® for the ¢/m ratio as V =
= 1000m/c and the values of Vg (= 26-8 and 429 cm®/mole for NaCl and KBr,
respectively) were taken from ref.?°. The linear relation holds for molalities from
0 to about 1-4 for NaCl and 0-8 for KBr. Least square evaluations of the intercepts
show that ¥, = V2(+£0-04 cm®) and thereby, that the solvent water does not suffer
any appreciable volume change due to hydration of the solute. This implies that
hydration of the solute is probably similar to adsorption®®?!. The slopes of the
straight lines give the contraction in volume represented by the term in the square
brackets in Eq. (6), from which the values of (V, + V. £ 8V) were found to be
16-35 and 32:94 cm*®/mole for NaCl and KBr, respectively. These are comparable
with the values of ¢ (apparent molal volume at infinite dilution) reported in the
literature: 16-6 (refs!®2°) and 163 (ref.'®) for NaCl and 336 (ref.'®) and 33-7
(refs'®:2°) for KBr. From Fig. 2 one infers that the undissociated electrolyte (or
associated ion pair) has the same volume Vj in the solution as in the solid state and
that V3, Vp and (V, + V_ % 8V) are independent of concentration in the region
of validity of linearity.

The volumes, V., and densities, d.,;., of the solutions calculated from Eq. (6)
using the above slopes and intercepts, are compared with the actual volumes, V,
and densities, d, in Table Il. Their close agreement [V, = V(+0-04 cm®) and
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TABLE I1

Comparison of actual and calculated volumes V(cm3 ) and densities d (g/cm3 ) of aqueous solu-

tions of NaCl and KBr at 25°C

NacCl KBr
m

v Vca lca d dca lcb 4 Vca ]ca d dca lcb
0-0 1003-:01 1003-:05 099700 0-99696 1003-01 100302 099700 0-99699
0-0064° 100313 100316 0-99825 (099822 — — —_ —
0-0256° 1003-48 100349 099802 0-99801 — — — -
0-0576° 100407 100406 099930 0-99931 — — — - -
0-1024° 100490 100488 1-00108 1-00110 — — —- —
0-1 1004-85 1004-84 1-00099 1-00100 1006:49 1006-46 1-00538 1-00541
02 1006:70 1006-67 1-004956 1-00499 100998 100996 1-01369 1-01371
0-3 1008-56 1008-53 1-00890 1-00893 1013-48 1013-48 1-02192 1-02193
04 101043 101042 1-01281 1-01282 1017-02 1017-02 1-03009 1-03007
05 1012-30 1012:30 1-01672 1-:01672 1 020-54 1020-57 1-03818 1-03815
0-6 1014-18 1014-19 1-02059 1-02058 102409 1024-11 1-04621 1-04618
07 1016:06 101607 1-02446 1-02445 1027-65 1027-65 105416 105416
0-8 101796 1017-97 1-02829 1-02828 1031-23 103120 1-:06205 1-06207
0-9 1019-86 1019-87 1-03210 1-03209 - - - -
1-0 1021-76 1021-77 1-03590 1-03589 - -
12 102560 102559 1-04342 1-04343 - —
1-4 102946 102944 1-05086 1-05088 - -

® Voarer EQ. (6); P dyyo = (1000 -+ mMp)[ V,, .. € For 00064, 0-0256, 0-0576, and 01024 mol/kg

solutions of NaCl, x = 0-947, 0-907, 0-877, and 0-854, respectively; obtained by using n, and ¢
(ref.}y in Eq. (2).

FiG. 2

Linear dependenceof y (= (V — m Vg), em?)
on ionic molality, am, for aqueous solutions
at 25°C, 1 NaCl; 2 KBr (full lines — least

squares fit)

1002

1000

998

om
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694 Heyrovska ¢

dea1e = d(£0-00004 g/cm®)] proves that the electrolytes are incompletely dissociated
in aqueous solutions. Similar results were obtained in the cases of KCl and KI.
It is pointed out here that the volumes of solutions of weak electrolytes like acetic
acid have also been interpreted'®!” by an equation similar to Eq. (6). In the preli-
minary work®®, a simpler expression for Vg (without +8V) was used; however,
inclusion of +8V can explain the reported'®!” negative values of ®?. (At higher
concentrations, the linear relations demonstrated in Fig. 2 do not hold: e.g.,
(V = Viar) is about 0-5 and 1-5 cm® for 2 molal solutions of NaCl and KBr respecti-
vely, but this will be discussed in a different paper.)

Correlation of a and ny, with the e.m.f. of Concentration Cells
The measured e.m.f., AE (= E — E°) of a concentration cell without transport is
related to log (pa/p}) through the Gibbs-Duhem requirement’
—55-51RTdIn p, = mFdE, (7)

where F is the Faraday constant. AE is used’'!?''® for the exact evaluation of the
molal activity coefficient y (or the non-ideality correction factor), say for a 1:1
electrolyte, from the relation

AE + (2RT/F)lnm = (—2RT/F)Iny, (8)
where (—2RT/F)In m is the supposed ideal e.m.f. corresponding to complete dis-

sociation at any molality m. However, in agreement with the idea of partial dissocia-
tion, it is found here that AE is directly proportional to the logarithm of the number

~log(zxm/nA)
13 22 26 (3)
o3{ " T I T T T
n 12
oE A 010
¢24 AE
005
01
00 4000 Fic. 3
Linear dependence of AE (V) on —log.
: 25 (2) .(am/nA) for aqueous solutions at 25°C,
! 5 . - t " 1 NaCl; 2 KBr; 3 HCI (full lines — least
-log {am/n,) squares fit)
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of moles of ions per mole of *“free’ solvent. Fig. 3 shows the linear relation between
AE (back-calculated from y data' as AE = —0-1183 log my) and —log (am/n,) for
solutions of NaCl (m = 0-0064 to 4), KBr (m = 0-1 to 4-5) and HCI (m = 01 to
1-2) in aqueous solutions at 25°C. Thus, AE depends both on o and ny, (since ny =
= 55:51 — mny,). The least square slopes were found to be 0-113, 0-108, and 0-115V
for NaCl, KBr and HCI, respectively. Hence, AE is given by the equation

AE = —§,(2RT[F) In [(am[n,)[(am[n,)°], )]

where (am/n,)° pertains to the reference solution or electrode at E® (for which
my = 1), and 8, is a constant. For NaCl, KBr and HCI &, has the values 0-953,
0-915, and 0-970, respectively. The preliminary results®®® show that the slopes and
hence 6, depend appreciably on the valency of the ions; e.g., 6, ~ 0-85 for 2:1
electrolytes. It is tentatively interpreted as a factor by which the actual e.m.f. is
reduced by the polarization effect of the solvent?2.

With reference to Fig. 3, line 3 for HCI, since AE (the ordinate) is directly propor-
tional to pH (= —log my)’, the relation between the “‘true molality of the hydrogen
ions”’, am, and pH is given by

pH — (pH)® = —6, log [(am/n,)/(am[n,)°], (10)

where (pH)0 refers to the reference solution. E.g., for 0-1 molal HCI solution at
25°C, am = 0-0864 (Table I) and pH (= —log my) = 1-099.

For very dilute solutions, since (am/n,) is proportional to ac, Eq. (9) reduces to
the E vs log oc linear relation proposed by Nernst?3.
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